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ABSTRACT

Aim Human activities are creating conservation challenges for cetaceans. Spa-

tially explicit risk assessments can be used to address these challenges, but

require species distribution data, which are limited for many cetacean species.

This study explores methods to overcome this limitation. Blue whales (Balae-

noptera musculus) are used as a case study because they are an example of a

species that have well-defined habitat and are subject to anthropogenic threats.

Location Eastern Pacific Ocean, including the California Current (CC) and

eastern tropical Pacific (ETP), and northern Indian Ocean (NIO).

Methods We used 12 years of survey data (377 blue whale sightings and

c. 225,400 km of effort) collected in the CC and ETP to assess the transferabil-

ity of blue whale habitat models. We used the models built with CC and ETP

data to create predictions of blue whale distributions in the data-poor NIO

because key aspects of blue whale ecology are expected to be similar in these

ecosystems.

Results We found that the ecosystem-specific blue whale models performed

well in their respective ecosystems, but were not transferable. For example,

models built with CC data could accurately predict distributions in the CC, but

could not accurately predict distributions in the ETP. However, the accuracy of

models built with combined CC and ETP data was similar to the accuracy of

the ecosystem-specific models in both ecosystems. Our predictions of blue

whale habitat in the NIO from the models built with combined CC and ETP

data compare favourably to hypotheses about NIO blue whale distributions,

provide new insights into blue whale habitat, and can be used to prioritize

research and monitoring efforts.

Main conclusions Predicting cetacean distributions in data-poor ecosystems

using habitat models built with data from multiple ecosystems is potentially a

powerful marine conservation tool and should be examined for other species

and regions.

Keywords
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INTRODUCTION

All of the world’s oceans are affected by human activities, and

over 40% of the oceans are influenced by multiple activities

(Halpern et al., 2008). The impacts of these activities can

result in significant conservation challenges for cetaceans. Spa-

tially explicit risk assessments can be used to address these

conservation challenges because they link species distributions

to the potential effects and distribution of human activities

(Stelzenm€uller et al., 2010; Grech et al., 2011). For example,

Redfern et al. (2013) used species distribution models to assess

the risk of ships striking blue, humpback, and fin whales in

alternative shipping lanes for the Southern California Bight,

which includes the two largest ports on the west coast of the
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United States. Spatially explicit risk assessments require quan-

titative representations of species distributions, which do not

exist for many cetacean species. Consequently, in addition to

investing in data collection, one of the most pressing marine

conservation needs is to develop tools to predict cetacean dis-

tributions in data-poor ecosystems.

Species distribution models are a powerful tool for pre-

dicting species distributions within surveyed regions (Redfern

et al., 2006; Forney et al., 2012). The ability of these models

to predict distributions in novel ecosystems (i.e. extrapola-

tion outside surveyed areas) is variable. For example, Van-

reusel et al. (2007) found high levels of transferability among

study sites located in the same ecoregion (sites were a maxi-

mum of 53 km apart and had similar climates, topography,

soil types, and vegetation) for resource-based models of two

butterfly species. In contrast, Randin et al. (2006) found

weak transferability between study sites spanning subalpine

and alpine belts in Switzerland and Austria for 54 plant dis-

tribution models. An assessment of model transferability

between eastern and western Finland for birds, butterflies,

and plants using 10 modelling techniques found good pre-

diction accuracy and transferability for three modelling tech-

niques (MaxEnt, generalized additive models (GAMs), and

generalized boosting methods) and that plant distribution

models showed lower transferability than bird and butterfly

models (Heikkinen et al., 2012).

Few studies have assessed model transferability in marine

ecosystems. Mannocci et al. (2015) developed a habitat mod-

elling approach to extrapolate cetacean densities outside of

surveyed areas; however, they did not have the data needed to

quantitatively evaluate their predictions. The first comprehen-

sive test of transferability for a marine predator (grey petrels)

showed that models identified potential distributions (where a

species could live) but failed to identify realized distributions

(where a species actually occurs relative to available habitat)

in novel ecosystems (Torres et al., 2015). We use data from

two large, well-surveyed regions in the eastern Pacific Ocean

to assess the transferability of blue whale (Balaenoptera mus-

culus) distribution models. Blue whales are an example of a

cetacean species that have well-defined habitats (i.e. they asso-

ciate closely with upwelling conditions in both temperate and

tropical ecosystems; Reilly & Thayer, 1990; Ballance & Pitman,

1998; Croll et al., 2005) and are subject to anthropogenic

threats (e.g. ship strikes and bycatch) in data-poor regions,

such as the northern Indian Ocean (NIO) (de Vos et al.,

2016). Very little information is available about blue whale

abundance and distribution in the NIO, but they have been

observed in areas where there is high shipping traffic, seismic

exploration, and commercial whale watching (Ilangakoon,

2012; Randage et al., 2014) and ship strikes have been docu-

mented off Sri Lanka (de Vos et al., 2013).

We built blue whale distribution models using systematic

line-transect survey data collected by NOAA Fisheries’ South-

west Fisheries Science Center between 1991 and 2009 in two

ecosystems within the eastern Pacific Ocean: the California

Current (CC) and eastern tropical Pacific (ETP). The CC

and ETP contain some of the most extensive cetacean line-

transect survey effort in the world (Kaschner et al., 2012).

Together they cover a large spatial extent that includes a

diversity of habitats. The 12 marine mammal and ecosystem

assessment surveys conducted in these regions span a 19-year

period and cover a broad range of interannual variability.

Models were built using data from the CC, ETP, and both

ecosystems combined. Throughout the world oceans, blue

whales forage on krill in upwelling areas associated with the

shelf edge and are also found in areas of oceanic upwelling

(Reilly & Thayer, 1990; Fiedler et al., 1998; Palacios, 1999;

Gill et al., 2011; Torres, 2013). We derived habitat variables

that indicate upwelling and processes that concentrate krill

from a global ocean reanalysis data set and a map of seafloor

geomorphic features. The models were used to predict blue

whale distributions in the CC, ETP, and NIO. Model predic-

tions were assessed using sightings data (CC, ETP, and NIO)

and whaling data (NIO).

METHODS

Blue whale ecology and data

Blue whale distributions have been extensively studied in

temperate and tropical ecosystems within the eastern Pacific

Ocean (15° S to 45° N) (e.g. Reilly & Thayer, 1990; Fiedler

et al., 1998). The highest blue whale densities in these

ecosystems are associated with upwelling-modified waters

that are highly productive and support dense aggregations of

euphausiids (e.g. krill). In the temperate CC, blue whales

feed on krill patches associated with the shelf edge (Fiedler

et al., 1998). When topographic breaks in the shelf edge are

located down-current from upwelling centres, they may pro-

vide foraging blue whales with an opportunity for high

energy gains (Croll et al., 2005). In the ETP, upwelling is

associated with the shelf edge (near the Gal�apagos Islands

and at the equatorward extremes of the California and Peru

Currents) and oceanic upwelling occurs along the equator

and at the Costa Rica Dome (Kessler, 2006).

We used distance to the shelf edge from a global, seafloor

geomorphic features map (Harris et al., 2014) to represent

the importance of this topographic feature in concentrating

krill. We used wind speed (WSPD) and sea surface tempera-

ture (SST), salinity (SSS), and height (SSH) to identify varia-

tions in upwelling, circulation, and water column

stratification that may affect forage availability. These four

dynamic variables were selected because upwelling is gener-

ally expected to be stronger in coastal and equatorial areas

where strong winds can drive offshore transport or diver-

gence of surface waters. Upwelled waters are also expected to

be colder and have higher salinity concentrations than adja-

cent surface waters. The higher density of upwelled waters in

the surface layer is expected to result in lower sea surface

heights (Talley et al., 2011).

Interactions between these variables can also be important

indicators of upwelling and other oceanographic processes.

Diversity and Distributions, 23, 394–408, ª 2017 John Wiley & Sons Ltd 395

Data-poor distribution predictions



For example, interactions between distance to shelf and the

dynamic variables may indicate local areas of coastal upwel-

ling and interactions between SSH and other dynamic vari-

ables may provide a better representation of stratification

and upwelling than SSH alone. The interaction between SST

and SSS can differentiate surface water masses and interac-

tions between WSPD and the other dynamic variables may

reflect the influence of winds on sea surface heat exchange

and evaporation (Talley et al., 2011). The four dynamic vari-

ables were extracted from a Simple Ocean Data Assimilation

reanalysis data set (SODA; Carton & Giese, 2008). These data

are available as monthly fields for the global ocean at 0.5-

degree resolution from 1871 through 2010 (SODA 2.2.4,

http://apdrc.soest.hawaii.edu/dods/public_data/SODA). We

extracted SST and SSS values at 5.01 m, which is the shal-

lowest depth available in the SODA data. We derived WSPD

from zonal and meridional wind stress. The monthly 0.5-

degree fields were interpolated using a two-dimensional

cubic spline to a 0.1-degree resolution using the MATLAB

routine interp2 (MATLAB, 2016).

We used 377 sightings of one or more blue whales (c. 441

individuals in the CC and 226 individuals in the ETP) and c.

225,400 km of effort (Fig. 1a) from surveys conducted by

NOAA Fisheries’ Southwest Fisheries Science Center from

August through November (CC: 1991, 1993, 1996, 2001,

2005, 2008, and 2009; ETP: 1998, 1999, 2000, 2003, and

2006). Line-transect surveys were conducted in both ecosys-

tems using large research vessels (i.e. observations were made

from a flying bridge located between 10 and 15 m above the

sea surface). Survey effort consisted of two observers using

pedestal-mounted 25 9 150 binoculars to search for marine

mammals during daylight hours; a third observer searched

by eye or with 79 handheld binoculars and recorded both

sightings data and survey conditions. When marine mam-

mals were detected, the vessel approached the group as

needed to identify species and estimate group size (see Kin-

zey et al., 2000 for detailed survey protocols). We obtained a

single group size estimate by averaging the best estimates

from all observers. If no observers provided a best estimate,

we averaged the minimum estimates.

(a)

(b)

Figure 1 (a) The California Current

(CC) and eastern tropical Pacific (ETP)

have been extensively surveyed by NOAA

Fisheries’ Southwest Fisheries Science

Center (study area boundaries are shown

with a black line). Grey lines represent

on-effort transects surveyed primarily

from August to November (CC: 1991,

1993, 1996, 2001, 2005, 2008, and 2009;

ETP: 1998, 1999, 2000, 2003, and 2006).

Black circles represent blue whale

sightings. (b) Few data are available for

the northern Indian Ocean (NIO; study

area boundary is shown with a black

line). Black crosses represent Soviet

whaling data (1963–1966) collected
during the November inter-monsoon and

black circles represent Soviet whaling

data (1963–1966) and more recent

sightings (1995, 1998, and 2012)

collected within the monsoon seasons

(Ballance & Pitman, 1998; Mikhalev

2000; Ballance et al., 2001; de Vos et al.,

2014b).
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We divided transects into continuous effort segments of c.

10 km using the approach described by Becker et al. (2010).

Distance to the shelf edge was calculated at the midpoint of

each segment using the Near tool in ArcGIS (version 10.2.2;

Esri, Redlands, CA, USA). Monthly SODA habitat variables

were averaged over the calendar year to represent the full

upwelling cycle (Kessler, 2006; Bograd et al., 2009) and to

facilitate transferability to regions that have been surveyed in

different seasons (i.e. the NIO). We used bilinear interpola-

tion to extract WSPD, SST, SSS, and SSH from the averaged

SODA grids at the segment midpoint.

The number of blue whales was predicted in each cell of a

10 km 9 10 km grid spanning the study areas. For predic-

tions in the CC and ETP, monthly SODA habitat variables

were averaged from July to December to capture the upwel-

ling conditions associated with the surveys. Predictions were

made for each year of survey data using distance to shelf cal-

culated at the centre of each grid cell and the averaged

SODA variables extracted at the centre of each grid cell by

bilinear interpolation. The predictions for each year were

averaged to summarize the predicted number of blue whales

across multiple years. The average predictions represent

expected long-term patterns in blue whale distributions

between July and December; they do not account for within-

year variation in distributions.

Blue whale data in our NIO study area (defined as north

of the equator) are extremely limited (Fig. 1b). They consist

of Soviet whaling data (n = 833) that were collected primar-

ily in November (other months include October and Decem-

ber) between 1963 and 1966 (Mikhalev, 2000). A small

number of more recent sightings (n = 17) were available

from a survey of the western tropical Indian Ocean con-

ducted from March to June in 1995 (Ballance & Pitman,

1998). Sightings were also available from a study conducted

around the Maldives in April of 1998 (n = 4; Ballance et al.,

2001) and studies conducted on the southern coast of Sri

Lanka in January and March of 2012 (n = 533; A. de Vos

unpublished data and de Vos et al., 2014b).

Blue whale distribution models cannot be built using the

NIO data because of their limited spatial and temporal reso-

lution. However, multiple studies have suggested that blue

whale ecology may be similar in the NIO and eastern Pacific

Ocean. For example, blue whales have been observed feeding

off the southern and northeastern coasts of Sri Lanka in

upwelling areas associated with the shelf edge and topo-

graphic breaks in the shelf edge (e.g. submarine canyons and

sloping bathymetry) (Alling et al., 1991; Randage et al.,

2014). The characteristics of these feeding areas are similar

to the characteristics of their feeding areas in the CC. Bal-

lance & Pitman (1998) found that blue whale sightings were

highly localized and that many of the whales were likely

feeding during a survey of the western tropical Indian Ocean.

Consequently, they hypothesized that blue whales in the

Indian Ocean may be associated with localized, productive

areas, similar to blue whale distributions in the ETP. Addi-

tionally, interannual variability in blue whale distributions

off the southern coast of Sri Lanka has been hypothesized to

correspond to changes in productivity (de Vos et al., 2014b).

We use our models that capture the full upwelling cycle in

the eastern Pacific Ocean to predict blue whale distributions

in the NIO because of the potential similarity of blue whale

ecology in both regions. Upwelling in the NIO is strongly

influenced by seasonally reversing monsoon winds that can

be divided into four periods: Northeast Monsoon (Decem-

ber–April), first inter-monsoon (May), Southwest Monsoon

(June–October), and second inter-monsoon (November)

(Tomczak & Godfrey, 2005). During the Southwest Mon-

soon, wind and current patterns create strong upwelling off

the coasts of Somalia and the Arabian Peninsula (Schott &

McCreary, 2001); upwelling also occurs off southwest India

and Sri Lanka (Schott & McCreary, 2001). Consequently, we

expect lower SST, higher SSS, and lower SSH in these

regions. Upwelling is generally weaker and more localized

during the Northeast Monsoon (Schott & McCreary, 2001;

de Vos et al., 2014a). An example of a local, productive area

occurs off the southern coast of Sri Lanka. Monsoon winds

result in coastal upwelling and, concomitantly, increased pro-

ductivity in this area (de Vos et al., 2014a). We predict blue

whale distributions in the NIO using monthly SODA habitat

variables averaged from January to March and July to

September to capture the upwelling patterns associated with

each monsoon season. Predictions were made in each cell of

a 10 km 9 10 km grid for both monsoon seasons in each

year within the two decades that span the CC and ETP time

series (i.e. 1991–2010); the predictions in each monsoon sea-

son were averaged to summarize the predicted number of

blue whales.

Habitat models

We used GAMs (Wood, 2006) to relate the number of blue

whales in each transect segment to the habitat variables, lar-

gely following the methods of Becker et al. (2016). We fit

GAMs in the R (version 3.1.1; R Core Team, 2014) package

mgcv (version 1.8-4; Wood, 2011). We used a Tweedie dis-

tribution (Miller et al., 2013) to account for overdispersion

and restricted maximum likelihood (REML) to optimize the

parameter estimates. Marra & Wood (2011) found that

REML allows for better smoothing parameter estimation

than generalized cross-validation.

One model was built using a thin plate regression spline for

each of the five habitat variables. Variables were selected for

exclusion from the model using a shrinkage approach that

modifies the smoothing penalty (Marra & Wood, 2011).

Unmodified smoothing penalties do not typically remove a

smooth from a model because they only shrink functions in

the penalty range space and do not shrink functions in the

penalty null space. The shrinkage approach adds a shrinkage

term to the penalty null space, which allows the smooth to

become identically zero and be removed from the model

(Marra & Wood, 2011). Additionally, we removed variables

from the model that had approximate P-values > 0.05. Models
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were refit after removing non-significant variables to ensure all

remaining variables had an approximate P-value < 0.05.

Ten additional models were built by replacing each pair of

habitat variables with a tensor product interaction term and

using a thin plate regression spline for each of the three

remaining habitat variables. Variable selection for the models

with interactions followed the same approach as used for the

model with no interactions. Models were built using data

from the CC, ETP, and both ecosystems combined. Models

built using only the CC or ETP data are referred to as

ecosystem-specific models. The area searched on each seg-

ment was included as an offset in all models because the

amount of effort varied among segments. The area searched

was calculated as 2 9 ESW 9 g(0) 9 distance travelled on

effort, where ESW is the effective strip width and g(0) is a

correction for missing animals on the transect. We use ESW

and g(0) estimates derived from some of the same surveys in

the CC (Barlow, 2003) and similar surveys in the ETP (sur-

vey data were collected using the same methods and some of

the same vessels; Ferguson & Barlow, 2001), but did not

truncate the most distant sightings because we wanted to

maximize the sample sizes for our models. Using all sightings

might introduce a small bias in predictions of the absolute

number of whales, but would not affect spatial patterns of

relative whale abundance.

Model assessment

We created presence and absence data points using the mid-

point of the transect segments (i.e. segments with no sightings

were assigned an absence and segments with one or more

sightings were assigned a presence) to evaluate model perfor-

mance in the CC and ETP. The NIO blue whale data are

comprised primarily of presence-only data. We evaluated

model performance for each monsoon period in the NIO

using the data collected within the monsoon period (Decem-

ber to April for the Northeast Monsoon and June to October

for the Southwest Monsoon) and data from monsoon transi-

tion periods (data were only collected during the November

inter-monsoon). We also randomly generated 500 sets of

pseudo-absences for each monsoon period; the number of

generated absences was equal to the number of presences.

Absences were generated throughout the study area because

presences and absences can occur close together in the eastern

Pacific Ocean across a range of time scales (i.e. within a single

survey period and between survey periods). We used the same

approach to generate pseudo-absence data for eastern Pacific

Ocean ecosystems and compared the results of model assess-

ment conducted with absence versus pseudo-absence data.

We assess the models using the area under the receiver

operating characteristic curve (AUC) (Fawcett, 2006) and the

true skill statistic (TSS) (Allouche et al., 2006). While the

reliability of AUC has been questioned, it can be used to

compare models for a single species and study extent (Lobo

et al., 2008). Consequently, we use AUCs to compare model

predictions within each ecosystem. The TSS is a threshold-

dependent measure of model performance that has been

shown to be independent of species prevalence (Allouche

et al., 2006). We used the sensitivity-specificity sum maxi-

mization approach (Liu et al., 2005) to obtain thresholds for

species presence when calculating TSS.

Golicher et al. (2012) show that the interpretation of AUC

can be compromised when using pseudo-absence data. Both

AUC and TSS must be calculated using pseudo-absences in the

NIO because very few absence data are available. Conse-

quently, we also evaluate models by the percentage of sightings

contained in the highest 2% of predicted blue whale densities.

The highest 2% of predicted densities was selected because bio-

logically important feeding areas (BIAs) cover c. 1.4% of the

CC study area. The CC BIAs were primarily identified using

non-systematic, coastal surveys conducted by small boat to

maximize encounters with blue whales for photo-identification

and tagging studies (Calambokidis et al., 2015). They provide

an independent estimate of the prevalence of important areas

for blue whales in the CC. No independent estimates of preva-

lence are available in the ETP and NIO. Consequently, we eval-

uate the percentage of sightings in the highest 2% of predicted

densities in all ecosystems. We also use the percentage of sight-

ings in the highest 10% of predicted blue whale densities to

ensure that an increasing percentage of sightings is included as

we expand the area deemed to be good habitat.

All four measures of model performance were used to

assess how well the ecosystem-specific models predicted

within ecosystem distributions (e.g. predictions of blue whale

distributions in the CC made by models built with CC data)

and how well they predicted a novel ecosystem (e.g. predic-

tions of blue whale distributions in the ETP made by models

built with CC data). All four measures were also used to

assess how well models built with data from the CC and ETP

predicted within ecosystem distributions (e.g. predictions of

blue whale distributions in the CC made by models built with

combined CC and ETP data). Each model was assigned four

ranks based on the measures of model performance: AUC,

TSS, and the percentage of sightings contained in the highest

2% and 10% of predicted densities. The mean of the four

ranks was used to select the best model in each ecosystem.

We used a chi-square statistic to test whether sightings in the

NIO occurred in the highest 2% and 10% of predicted blue

whale densities more often than expected by random chance.

RESULTS

Are the models transferable in the eastern Pacific

Ocean?

The functional forms of the relationships between the num-

ber of blue whales and each habitat variable, as characterized

by the thin plate regression splines, were similar across mod-

els with and without interaction terms. Consequently, the

primary habitat relationships are shown in Fig. 2 using the

models developed without interactions for all three data sets

(CC, ETP, and both ecosystems combined). In the CC, blue
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whales were associated with the shelf and upwelling condi-

tions. The strongest relationship was between increased blue

whale numbers and increased SSS. Blue whale numbers also

decreased in waters that had the lowest and highest SSH val-

ues. A similar and strong association was also seen between

blue whale numbers and SSH in the ETP. However, the rela-

tionship with SSS was much weaker in the ETP and this

variable was excluded from the model built without interac-

tions. Instead, increased numbers of blue whales were found

from the shelf edge out to a distance of c. 1,000 km. Models

built with the combined CC and ETP data were character-

ized by the strongest habitat relationships in the ecosystem-

specific models (i.e. the models built with only the CC data

or only the ETP data).

All four measures of model performance suggest that the

ecosystem-specific models accurately predict within ecosys-

tem blue whale distributions, but they do not accurately pre-

dict blue whale distributions in a novel ecosystem (Tables 1

& 2). Specifically, there is a large drop in the AUCs and TSSs

when models built with data from one ecosystem are used to

predict distributions in the other ecosystem (Tables 1 & 2).

Additionally, larger numbers of sightings are contained in

the highest 2% and 10% of predicted blue whale densities

when the ecosystem-specific models are used to make predic-

tions within their respective ecosystems (e.g. 15% and 50%

of sightings in the CC, respectively, and 41% and 64% of

sightings in the ETP, respectively), compared to making pre-

dictions in novel ecosystems (Tables 1 & 2).

The four measures of model performance also show that

the accuracy of predictions from the ecosystem-specific mod-

els within their respective ecosystems is similar to the accu-

racy of predictions from models built with data from both

ecosystems combined (Tables 1 & 2). In particular, the AUCs

and TSSs for models built with data from both ecosystems

combined are similar to the AUCs and TSSs for the ecosys-

tem-specific models within their respective ecosystems. A

large percentage of sightings are also contained in the highest

2% and 10% of blue whale densities predicted by the models
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Figure 2 Results of the generalized additive models used to relate the number of blue whales to distance to shelf edge (Shelf; measured

in kilometres) and oceanographic variables derived from a Simple Ocean Data Assimilation reanalysis data set (sea surface temperature

in degrees celsius = SST, sea surface salinity in PSU = SSS, sea surface height in metres = SSH, and wind speed in m s�1 = WSPD).

Models were fit using data from (a) the California Current, (b) the eastern tropical Pacific, and (c) both ecosystems. The distribution of

values for each variable is shown in the rug plot on the x-axis. Solid lines indicate the marginal contribution of each variable and the

shape of the relationship; dashed lines are plotted at two standard errors above and below the estimated smooth. The degrees of

freedom for each variable are shown in the y-axis label. All y-axes have the same scale.
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built with data from both ecosystems combined (15% and

44% of sightings in the CC, respectively, and 30% and 76%

of sightings in the ETP, respectively). For the ecosystem-spe-

cific models and the models built with data from both

ecosystems combined, the overall model assessment results

were similar for the absence and pseudo-absence data. In

particular, the same models were selected as the best models

in both the CC and ETP. Although the mean model ranks

were not identical when using pseudo-absences, there was a

high correlation between the mean ranks calculated using

absence and pseudo-absence data in both ecosystems

(> 0.95).

Predictions of blue whale distributions in the CC from the

best model built with CC data and the best model built with

data from both ecosystems combined (Fig. 3a,b) show higher

blue whale densities close to shore and that higher densities

occur farther offshore in the south. The largest differences in

the maps occur in the areas of the highest predicted densities

near the coast (Fig. 3c). Predictions of blue whale distribu-

tions in the ETP from the best model built with ETP data

and the best model built with data from both ecosystems

combined reflect upwelling areas: near the Gal�apagos Islands,

in the California and Peru Currents, along the equator, and

at the Costa Rica Dome (Fig. 3d,e). Differences between the

Table 1 The percentage of sightings in the highest 2% and 10% of predicted blue whale densities, the area under the receiver operating

characteristic curve (AUC), and the True Skill Statistic (TSS) are shown for blue whale distributions in the California Current (CC)

predicted by models built using data from the CC, eastern tropical Pacific (ETP), and both ecosystems combined. The models were

ranked according to each of these four measures of model performance and the best models were selected using the mean rank. For

each data set, one model was built using a spline for each of the five variables and 10 models were built by replacing each pair of

variables with an interaction term and using a spline for the three remaining variables. The variables selected in each model are shown

in the table (Shelf is distance to the shelf edge, WSPD is wind speed, and SST, SSS, and SSH are sea surface temperature, salinity, and

height, respectively).

Model Data set

Percentage of sightings

AUC TSS Mean rank

Highest 2% of

predictions

Highest 10% of

predictions

Shelf + SSS + SSH 9 WSPD CC 15.38 45.73 0.760 0.431 1.5

Shelf 9 SSH + SSS + WSPD CC 14.53 50.00 0.758 0.427 2.75

Shelf + SST 9 SSH + SSS + WSPD CC 15.38 44.02 0.756 0.416 4.75

Shelf 9 SSS + SST + SSH + WSPD CC + ETP 15.38 44.87 0.751 0.412 6.75

Shelf + SST 9 WSPD + SSS + SSH CC + ETP 14.96 41.88 0.752 0.412 8.75

Shelf + SST + SSS + SSH + WSPD CC 11.97 43.16 0.746 0.425 9.25

Shelf 9 SSH + SSS + WSPD CC + ETP 14.10 44.02 0.752 0.411 9.25

Shelf 9 SSS + SST + SSH + WSPD CC 11.11 43.16 0.746 0.424 11

Shelf 9 SST + SSS + SSH + WSPD CC + ETP 14.53 41.88 0.749 0.403 11.25

Shelf + SST 9 SSS + SSH + WSPD CC + ETP 11.97 40.17 0.749 0.413 11.75

Shelf 9 WSPD + SST + SSS + SSH CC + ETP 11.97 40.17 0.749 0.413 12.25

Shelf + SST + SSS 9 WSPD + SSH CC + ETP 12.39 40.60 0.745 0.413 12.75

Shelf + SST 9 SSH + SSS + WSPD CC + ETP 14.53 38.03 0.753 0.410 12.75

Shelf 9 WSPD + SST + SSS + SSH CC 12.39 38.46 0.743 0.426 13

Shelf + SST 9 WSPD + SSS + SSH CC 9.40 44.44 0.744 0.417 13

Shelf 9 SST + SSS + WSPD CC 11.54 44.02 0.739 0.412 13.75

Shelf + SST + SSS 9 SSH + WSPD CC 11.54 39.32 0.739 0.426 14

Shelf + SST + SSS + SSH + WSPD CC + ETP 9.83 41.88 0.747 0.413 14

Shelf + SST + SSS 9 WSPD + SSH CC 9.83 38.89 0.742 0.431 15

Shelf + SST + SSS + SSH 9 WSPD CC + ETP 11.11 40.60 0.745 0.412 15.5

Shelf + SST 9 SSS + SSH + WSPD CC 10.68 39.32 0.736 0.422 16.5

Shelf + SST + SSS 9 SSH + WSPD CC + ETP 8.55 41.03 0.736 0.408 20

Shelf 9 WSPD + SST + SSH ETP 10.68 35.47 0.618 0.275 22.25

Shelf + SST + SSS + SSH 9 WSPD ETP 10.26 29.06 0.581 0.210 24.25

Shelf + SST + SSH + WSPD ETP 2.14 31.62 0.581 0.216 25.25

Shelf 9 SST + SSH ETP 0.00 22.65 0.663 0.286 26

Shelf 9 SSS + SST + SSH ETP 8.97 26.92 0.566 0.123 26.5

Shelf 9 SSH + SST + SSS + WSPD ETP 7.69 23.50 0.564 0.162 27

Shelf + SST + SSS 9 WSPD + SSH ETP 0.85 20.09 0.540 0.151 28.5

Shelf + SST + SSS 9 SSH + WSPD ETP 0.43 16.67 0.511 0.098 30

Shelf + SST 9 WSPD + SSH ETP 0.00 5.98 0.527 0.080 30.75

Shelf + SST 9 SSH + WSPD ETP 0.00 2.56 0.474 0.079 31.75

Shelf + SST 9 SSS + SSH + WSPD ETP 0.00 0.43 0.408 0.084 31.75
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predictions (Fig. 3f) are smaller than the differences in the

CC (Fig. 3c) and occur primarily in the Costa Rica Dome.

Can the models predict distributions in a novel,

data-poor ecosystem?

We used the models built with CC and ETP data to predict

blue whale distributions in the NIO because these models

were able to accurately capture blue whale distributions in

both eastern Pacific Ocean ecosystems. The four measures of

model performance identify a single model that provides the

best match to the NIO blue whale data for the Northeast

Monsoon (i.e. January–March). In particular, the model that

contains sea surface salinity, wind speed, and an interaction

between distance to the shelf edge and sea surface height was

ranked as the best model by all four measures (Table 3). The

chi-square statistic shows that this model contains signifi-

cantly (P < 0.0001) more sightings in the highest 2% and

10% of predicted blue whale densities (11% and 18% of

sightings, respectively) than expected by random chance.

In the Southwest Monsoon (i.e. July–September), the

model with the best mean rank did not have the best rank

for all four measures of model performance. This model,

which contains sea surface temperature and height, wind

Table 2 The percentage of sightings in the highest 2% and 10% of predicted blue whale densities, the area under the receiver operating

characteristic curve (AUC), and the True Skill Statistic (TSS) are shown for blue whale distributions in the eastern tropical Pacific (ETP)

predicted by models built using data from the ETP, California Current (CC), and both ecosystems combined. The models were ranked

according to each of these four measures of model performance and the best models were selected using the mean rank. For each data

set, one model was built using a spline for each of the five variables and 10 models were built by replacing each pair of variables with

an interaction term and using a spline for the three remaining variables. The variables selected in each model are shown in the table

(Shelf is distance to the shelf edge, WSPD is wind speed, and SST, SSS, and SSH are sea surface temperature, salinity, and height,

respectively).

Model Data set

Percentage of sightings

AUC TSS Mean Rank

Highest 2% of

predictions

Highest 10% of

predictions

Shelf + SST 9 SSH + WSPD ETP 40.78 64.08 0.883 0.675 3.5

Shelf 9 SSS + SST + SSH ETP 33.98 53.40 0.890 0.711 4

Shelf + SST 9 SSH + SSS + WSPD CC + ETP 30.10 75.73 0.887 0.666 4.5

Shelf 9 WSPD + SST + SSH ETP 25.24 58.25 0.883 0.690 5.75

Shelf + SST 9 SSS + SSH + WSPD CC + ETP 25.24 60.19 0.869 0.670 8.75

Shelf + SST + SSH + WSPD ETP 25.24 59.22 0.874 0.669 8.75

Shelf + SST + SSS 9 SSH + WSPD ETP 36.89 61.17 0.874 0.639 9

Shelf 9 SSS + SST + SSH + WSPD CC + ETP 25.24 40.78 0.877 0.699 9.75

Shelf 9 SSH + SST + SSS + WSPD ETP 26.21 62.14 0.874 0.635 9.75

Shelf + SST + SSS 9 WSPD + SSH ETP 26.21 57.28 0.876 0.644 9.75

Shelf 9 SST + SSS + SSH + WSPD CC + ETP 25.24 45.63 0.871 0.679 11.5

Shelf + SST 9 SSS + SSH + WSPD ETP 25.24 57.28 0.867 0.661 11.75

Shelf 9 SST + SSH ETP 26.21 55.34 0.868 0.648 12

Shelf + SST + SSS + SSH 9 WSPD CC + ETP 25.24 50.49 0.868 0.655 13.5

Shelf + SST + SSS + SSH + WSPD CC + ETP 25.24 50.49 0.864 0.669 13.75

Shelf + SST + SSS 9 WSPD + SSH CC + ETP 25.24 51.46 0.866 0.657 14

Shelf 9 SSH + SSS + WSPD CC + ETP 27.18 47.57 0.865 0.659 14.25

Shelf 9 WSPD + SST + SSS + SSH CC + ETP 24.27 48.54 0.867 0.684 14.5

Shelf + SST 9 WSPD + SSS + SSH CC + ETP 25.24 48.54 0.859 0.660 15.25

Shelf + SST + SSS + SSH 9 WSPD ETP 23.30 53.40 0.875 0.641 15.25

Shelf + SST 9 WSPD + SSH ETP 24.27 36.89 0.868 0.675 16

Shelf 9 SSS + SST + SSH + WSPD CC 26.21 51.46 0.731 0.368 17.25

Shelf + SST + SSS 9 SSH + WSPD CC + ETP 25.24 45.63 0.857 0.645 17.5

Shelf + SST 9 SSH + SSS + WSPD CC 0.00 1.94 0.758 0.523 24.25

Shelf + SSS + SSH 9 WSPD CC 0.00 0.00 0.716 0.466 25.75

Shelf + SST + SSS + SSH + WSPD CC 0.00 0.00 0.692 0.427 26.25

Shelf 9 SST + SSS + WSPD CC 1.94 36.89 0.625 0.227 26.25

Shelf 9 WSPD + SST + SSS + SSH CC 0.00 0.97 0.680 0.304 27

Shelf + SST + SSS 9 SSH + WSPD CC 0.00 0.97 0.604 0.351 27

Shelf + SST + SSS 9 WSPD + SSH CC 0.00 2.91 0.600 0.334 27

Shelf + SST 9 WSPD + SSS + SSH CC 0.00 0.00 0.569 0.202 29

Shelf + SST 9 SSS + SSH + WSPD CC 0.00 0.00 0.537 0.188 29.5

Shelf 9 SSH + SSS + WSPD CC 0.00 0.00 0.482 0.175 30
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speed, and an interaction between distance to the shelf edge

and sea surface salinity, had the best rank for the percentage

of sightings contained in the highest 2% of predicted densi-

ties and AUC, but ranked lower for the percentage of sight-

ings contained in the highest 10% of predicted densities and

TSS (Table 3). However, the chi-square statistic shows that

this model contains significantly (P < 0.0001) more sightings

in the highest 2% and 10% of predicted blue whale densities

(19% and 33% of sightings, respectively) than expected by

random chance.

Blue whale habitat was predicted off the Arabian Peninsula

and in the Gulf of Aden during both monsoon seasons,

although there is a shift towards more coastal habitat during

the Southwest Monsoon season (Fig. 4). Blue whale habitat

was also predicted around southwestern India and Sri Lanka

in both seasons, although there is a shift towards more off-

shore habitat during the Southwest Monsoon, including the

Sri Lanka Dome, an oceanic upwelling feature off the east

coast of Sri Lanka. The biggest change between seasons was

an increase in predicted habitat along the coast of Pakistan,

to the west of the Maldives and Lakshadweep, and on the

eastern and western coasts of India during the Southwest

Monsoon. Whaling data collected in waters on the Pakistan–
India border and west of the Maldives and Lakshadweep

during the November inter-monsoon occur in areas pre-

dicted to contain few blues whales during the Northeast

(a) California Current data (b) California Current and (c) Difference

eastern tropical Pacific data

(d) Eastern tropical Pacific data
(e) California Current and 

(f) Differenceeastern tropical Pacific data

Figure 3 Maps of mean predicted blue whale density in the California Current (CC) are shown for the model with the best mean rank

that was built with (a) CC data and (b) CC and eastern tropical Pacific (ETP) data. (c) Differences between predictions from these two

models are shown (the highest predictions were 0.019 for the model built with the CC data and 0.008 for the model built with CC and

ETP data). Maps of mean predicted blue whale density in the eastern tropical Pacific are shown for the model with the best mean rank

that was built with (d) ETP data and (e) CC and ETP data. (f) Differences between predictions from these two models are shown (the

highest predictions were 0.012 for the model built with the ETP data and 0.011 for the model built with CC and ETP data). Sightings

are shown as black dots. The thresholds for categories of predicted density are unique in each map and represent fixed percentages (e.g.

the highest 2%, 5%, 10%, etc.). Important blue whale feeding areas in the California Current, identified by Calambokidis et al. (2015),

are outlined in light grey. [Colour figure can be viewed at wileyonlinelibrary.com]
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Monsoon (Fig. 4). However, these areas are predicted to

contain habitat (i.e. higher numbers of blue whales) during

the Southwest Monsoon.

DISCUSSION

Are the models transferable in the eastern Pacific

Ocean?

In the eastern Pacific Ocean, blue whales are associated with

upwelling-modified waters that are highly productive and

support dense aggregations of euphausiids. Intermediate SSH

was an important indicator of the upwelling-modified waters

associated with blue whale habitat in our models for both

eastern Pacific Ocean ecosystems (i.e. the CC and ETP).

Pardo et al. (2015) also found higher blue whale densities in

waters with intermediate values of absolute dynamic topogra-

phy (SSH is one of the variables used to calculate absolute

dynamic topography). They suggested that blue whales may

be found in waters with intermediate values because biomass

aggregations tend to be found downstream from upwelling

centres.

Although SSH was an important variable in both ecosys-

tem-specific models, the models were not transferable. Con-

sequently, the models suggest that other variables are also

needed to identify blue whale habitat and that these variables

are unique in each ecosystem. In the CC, there is a large dif-

ference between the higher salinity upwelling-modified waters

and the lower salinity surface waters flowing from the north

(Auad et al., 2011). Consequently, salinity was an important

indicator of upwelling-modified waters in blue whale habitat

models for the CC. The ETP is oceanographically more

diverse and contains regions with little to no near-surface

salinity gradients and extreme thermal stratification (Fiedler

& Talley, 2006), reducing the importance of salinity as an

indicator of upwelling-modified waters in blue whale habitat

models. However, the range of distances to the shelf edge is

much larger in the ETP than the CC and blue whales occur

closer to the shelf edge in both regions. Consequently, dis-

tance to the shelf edge was an important variable in blue

Table 3 The percentage of sightings in the highest 2% and 10% of predicted blue whale densities, the area under the receiver operating

characteristic curve (AUC), and the True Skill Statistic (TSS) are shown for blue whale distributions predicted in the northern Indian

Ocean during the Northeast and Southwest Monsoons by models built using combined California Current (CC) and eastern tropical

Pacific (ETP) data. The models were ranked according to each of these four measures of model performance and the best models were

selected using the mean rank. For each data set, one model was built using a spline for each of the five variables and 10 models were

built by replacing each pair of variables with an interaction term and using a spline for the three remaining variables. The variables

selected in each model are shown in the table (Shelf is distance to the shelf edge, WSPD is wind speed, and SST, SSS, and SSH are sea

surface temperature, salinity, and height, respectively).

Model Data set

Percentage of sightings

AUC TSS Mean rank

Highest 2% of

predictions

Highest 10% of

predictions

Northeast Monsoon

Shelf 9 SSH + SSS + WSPD CC + ETP 11.25 18.49 0.732 0.447 1

Shelf + SST 9 SSH + SSS + WSPD CC + ETP 9.36 17.21 0.640 0.348 3.75

Shelf + SST + SSS + SSH 9 WSPD CC + ETP 6.04 16.38 0.666 0.398 4.5

Shelf + SST 9 SSS + SSH + WSPD CC + ETP 8.91 18.11 0.518 0.258 5

Shelf 9 WSPD + SST + SSS + SSH CC + ETP 5.28 18.49 0.505 0.285 5.5

Shelf + SST 9 WSPD + SSS + SSH CC + ETP 9.43 18.34 0.505 0.169 5.75

Shelf + SST + SSS + SSH + WSPD CC + ETP 7.85 18.19 0.472 0.202 7

Shelf + SST + SSS 9 WSPD + SSH CC + ETP 1.28 8.83 0.521 0.235 7.5

Shelf + SST + SSS 9 SSH + WSPD CC + ETP 0.68 0.68 0.551 0.233 8.25

Shelf 9 SSS + SST + SSH + WSPD CC + ETP 0.08 4.15 0.505 0.238 8.5

Shelf 9 SST + SSS + SSH + WSPD CC + ETP 6.64 13.21 0.410 0.095 9

Southwest Monsoon

Shelf 9 SSS + SST + SSH + WSPD CC + ETP 18.96 32.72 0.799 0.501 3.25

Shelf + SST 9 SSS + SSH + WSPD CC + ETP 15.31 33.57 0.778 0.525 3.75

Shelf + SST + SSS + SSH + WSPD CC + ETP 14.75 37.78 0.768 0.490 4

Shelf 9 SST + SSS + SSH + WSPD CC + ETP 6.74 37.22 0.796 0.512 4.5

Shelf + SST + SSS 9 WSPD + SSH CC + ETP 12.22 36.94 0.756 0.436 5.5

Shelf 9 SSH + SSS + WSPD CC + ETP 10.81 34.27 0.757 0.433 6

Shelf + SST 9 SSH + SSS + WSPD CC + ETP 16.43 40.87 0.606 0.321 6

Shelf + SST 9 WSPD + SSS + SSH CC + ETP 8.57 47.05 0.637 0.374 6.25

Shelf 9 WSPD + SST + SSS + SSH CC + ETP 17.56 27.67 0.630 0.229 7.75

Shelf + SST + SSS + SSH 9 WSPD CC + ETP 9.27 31.74 0.668 0.332 8

Shelf + SST + SSS 9 SSH + WSPD CC + ETP 0.00 13.90 0.529 0.175 11
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whale habitat models for the ETP and indicates that blue

whales are not found in the most offshore waters.

Models built with the combined CC and ETP data were

characterized by the strongest habitat relationships in the

ecosystem-specific models. The accuracy of predictions from

these models was similar to the accuracy of the ecosystem-

specific models within their respective ecosystems. However,

the best model built with data from both ecosystems com-

bined was unique in each ecosystem. Specifically, the best

CC model contained an interaction between distance to the

shelf edge and salinity, indicating the importance of upwel-

ling-modified waters close to the shelf edge. The best ETP

model contained an interaction between SST and SSH, indi-

cating the importance of water column stratification. The

flexibility in our modelling framework (developing a suite of

models using the combined data sets and independently

selecting the best model for each ecosystem, rather than

selecting a single best model for both ecosystems) resulted in

accurate predictions of blue whale distributions throughout

the entire region (the eastern Pacific Ocean).

Can the models predict distributions in a novel,

data-poor ecosystem?

We used the models built with CC and ETP data to predict

blue whale distributions in the NIO because these models

were able to accurately capture blue whale distributions in

both eastern Pacific Ocean ecosystems and studies have sug-

gested that blue whale ecology is likely similar in the eastern

Pacific Ocean and the NIO. We selected the best models for

both eastern Pacific Ocean ecosystems using the mean rank

of four measures of model performance. Model ranks calcu-

lated using presence and absence data were similar to model

ranks calculated using presence and pseudo-absence data and

(b) Southwest Monsoon

(a) Northeast Monsoon

Figure 4 Blue whale habitat in the

northern Indian Ocean was predicted by

models built using California Current

and eastern tropical Pacific data. The (a)

predictions for the Northeast Monsoon

(January–March) and the (b) predictions

for the Southwest Monsoon (July–
September) are mapped using thresholds

that are unique in each map and

represent fixed percentages (e.g. the

highest 2%, 5%, 10%, etc.). Whaling data

and more recent sightings collected

within each monsoon season are shown

as larger black dots. Whaling data

collected during the November inter-

monsoon are shown as small black

crosses. It is primarily these

inter-monsoon whaling data that occur

in areas of lower predicted blue whale

numbers off the Pakistan–India border

and west of the Maldives and

Lakshadweep during the Northeast

Monsoon. These data occur in areas of

higher predicted blue whale numbers

during the Southwest Monsoon,

suggesting that biomass accumulation

associated with upwelling during the

Southwest Monsoon continues to

support blue whales during the

November inter-monsoon. [Colour figure

can be viewed at wileyonlinelibrary.com]
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the same models were selected as the best models in both

eastern Pacific Ocean ecosystems. Consequently, we selected

the best models for each monsoon season in the NIO using

the mean rank of the four measures of model performance.

Predictions from the best models for both monsoon seasons

compare favourably to hypotheses about NIO blue whale

distributions and provide new insights into blue whale

habitat.

Anderson et al. (2012) described blue whale distribution

and movement patterns in the NIO from a comprehensive

synthesis of available data, including the data used in our

study, other sightings data, strandings, and acoustic detec-

tions. They hypothesize that blue whales feed in areas associ-

ated with strong upwelling during the Southwest Monsoon

and seek out localized, highly productive areas during the

Northeast Monsoon, when upwelling is weaker. Ilangakoon

& Sathasivam’s (2012) review of sightings and strandings

from Sri Lanka and India suggests that blue whales are pre-

sent in this small, highly productive feeding area throughout

the year. They suggest that blue whales make localized move-

ments within this area, including potentially moving farther

off the east coast of Sri Lanka during the Southwest Mon-

soon to feed in the Sri Lanka Dome.

Our models predict blue whale habitat in the upwelling

areas suggested by Anderson et al. (2012) during the South-

west Monsoon (i.e. off the Arabian Peninsula, southwestern

India, and western Sri Lanka). However, our models also

predict that blue whale habitat occurs in these areas during

the Northeast Monsoon. The habitat predicted in the western

NIO during the Northeast Monsoon occurs farther offshore

than the habitat predicted during the Southwest Monsoon,

suggesting that localized movements may occur in this

region. A narrow band of habitat is predicted on the shelf

edge off southwestern India and around eastern, western,

and southern Sri Lanka during the Northeast Monsoon. Dur-

ing the Southwest Monsoon, the habitat expands offshore

and covers a much larger area, including the Sri Lanka

Dome. This expansion is consistent with the localized move-

ments suggested by Ilangakoon & Sathasivam (2012).

Our models predict blue whale habitat along the coast of

Pakistan and to the west of the Maldives and Lakshadweep

during the Southwest Monsoon; our models predict low

numbers of blue whales in these areas during the Northeast

Monsoon. Anderson et al. (2012) hypothesized that whales

would be present in these areas during the Northeast Mon-

soon. Whaling data were primarily collected in these areas

during the November inter-monsoon, resulting in a corre-

spondence between our predictions and these data in the

Southwest Monsoon and a mismatch between our predic-

tions and these data in the Northeast Monsoon. Time lags

between upwelling and biomass accumulation may suggest

that the habitat predicted by our models in these regions

during the Southwest Monsoon (July–September) continues

to support blue whales during the November inter-monsoon.

Our predictions can be used to prioritize blue whale

research and monitoring efforts in the NIO. In particular,

future research and monitoring efforts should be directed to

collect distribution data in the areas predicted to be good

blue whale habitat: the western Arabian Sea during all sea-

sons, off southwestern India and Sri Lanka in all seasons, off

Pakistan and western India during the Southwest Monsoon,

off eastern India during the Southwest Monsoon, and west

of the Maldives and Lakshadweep during the Southwest

Monsoon. Research and monitoring in these areas are criti-

cally important because these areas overlap with some of the

busiest shipping routes in the world (Tournadre, 2014). For

example, the major shipping route linking the Arabian Sea

and Europe goes through the Gulf of Aden before entering

the Red Sea and Suez Canal. Shipping traffic is also high off

southwestern India and Priyadarshana et al. (2016) found

consistently high densities of blue whales off Sri Lanka in

one of the world’s busiest shipping routes.

Our predictions should be reassessed and refined as

more data become available in the NIO. We used whaling

data to assess our models because limited recent sightings

data are available. Use of the whaling data assumes that

habitat has not changed since the data were collected in

the 1960s. Regime shifts and interdecadal variability have

been identified in all ocean basins, although most studies

show stronger variability in the Pacific Ocean than the

Indian Ocean (e.g. Messi�e & Chavez, 2011) and the mid-

1970s shift may have been particularly weak in the Indian

Ocean (Powell & Xu, 2015). There is also an overlap

between recent sightings (Ballance & Pitman, 1998; Ballance

et al., 2001) and whaling data in the eastern Arabian Sea

(between the Maldives and Sri Lanka). Observations of blue

whales at the mouth of the Gulf of Aden on the coast of

Somalia in 1985 by Small & Small (1991) overlap with

whaling data in the western NIO.

The habitat data used in our models should also be reas-

sessed and refined as more data become available. We used

the distance to the shelf edge and physical oceanographic

data in our models because more direct measures of produc-

tivity (e.g. chlorophyll concentrations) are not currently

available for our full time series of data in the eastern Pacific

Ocean. However, the uncertainty in our predictions may be

reduced by incorporating these more direct measures of pro-

ductivity in the models. Finally, our predictions identify

areas with relatively good and poor blue whale habitat over

long time scales; the predictions do not capture interannual

variability in blue whale distributions. Previous studies have

found interannual variability in blue whale distributions in

the NIO (Ballance et al., 2001; de Vos et al., 2014b). For

example, Ballance et al. (2001) found few blue whales in a

previously occupied area near the Maldives during the 1998

El Ni~no; one of the observed whales was thin (the dorsal

processes of the vertebral column were clearly visible along

the back anterior to the dorsal fin), suggesting that El Ni~no

may influence their distribution and feeding success. The

uncertainty in our predictions caused by this interannual

variability can be reduced as more blue whale distribution

data become available and models are refined.
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CONCLUSION

The ecosystem-specific models that we developed for blue

whales were not transferable to novel ecosystems, even

though we selected blue whales because they are an example

of a cetacean species with well-defined habitat and we used

data from two large ecosystems that have some of the most

extensive cetacean survey effort in the world. We were able

to identify areas of potential habitat in a novel, data-poor

marine ecosystem where the species ecology is expected to be

similar using models built with data from both ecosystems.

Using data sets from multiple ecosystems improved transfer-

ability by expanding the range of spatial and temporal habi-

tat variability included in the models. This approach

represents a potentially powerful tool for addressing a press-

ing marine conservation need and should be examined for

other species and regions.
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